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Intrinsic Magnetic Flux of the Electron’s
Orbital and Spin Motion
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In analogy with the fact that there are magnetic moments associated respectively with
the electron’s orbital and spin motion in an atom we present several analyses on a
proposal to introduce a concept of intrinsic magnetic flux associated with the electron’s
orbital and spin motion. It would be interesting to test or to demonstrate Faraday’s and
Lenz’s laws of electromagnetic induction arising directly from the flux change due to
transition of states in an atom and to examine applications of this concept of intrinsic
flux.
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1. INTRODUCTION

Using the semi-classical Bohr-Sommerfeld quantization rule (Landau and
Lifshitz, 2002; Merzbacher, 1998) Kittel presented an analysis showing that an
electron in circular motion in a constant external magnetic field would enclose a
magnetic flux which admits only a discrete set of values (Kittel, 1996; Saglam and
Boyacioglu, 2002a, 2002b):

�k =
(

k + 1

2

)
h

e
, k = 0, 1, 2, . . . , (1)

where e > 0 is the elementary charge and h is the Planck’s constant. One can
arrive at this result in a formal manner, using quantum mechanical results on the
motion of a particle of charge q and mass mq in an external magnetic field. A
constant magnetic field along the z-axis of magnitude B is associated with a vector
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potential

A = (Ax,Ay,Az), Ax = −1

2
By, Ay = 1

2
Bx, Az = 0. (2)

The magnitude of A is A = 1
2Br , where r =

√
x2 + y2. A charged classical par-

ticle will spiral along the z-axis, i.e., its behaviour can be decomposed into a
uniform motion along the z-axis and a circular motion on the x–y plane of angular
frequency

ωq = qB/mq. (3)

When quantized we will find that in the Heisenberg picture the equations of mo-
tion of the particle resemble the corresponding classical Hamilton’s equations of
motion, and consequently the particle’s motion also resembles that of its classical
counter part (Capri, 1985), i.e., we can identify a circular motion on the x–y plane
which enables us to define a magnetic flux enclosed by the orbit of the circular
motion. A brief analysis is set out in the next two paragraphs.

First we observe that the Hamiltonian of the particle can be decomposed into
a sum of two commuting parts, i.e.,

Ĥ = 1

2mq

(̂p − qA)2 = Ĥz + Ĥxy (4)

where

Ĥz = 1

2mq

p̂2
z , (5)

and

Ĥxy = 1

2mq

{
(p̂x − qAx)2 + (p̂y − qAy)2

}
(6)

= 1

2mq

(
p̂2

x + p̂2
y

) + q2B2

8mq

(̂
x2 + ŷ2

) − qB

2mq

(̂xp̂y − ŷp̂x). (7)

Introduce two new operators v̂x and v̂y by

v̂x = 1

mq

(p̂x − qAx), v̂y = 1

mq

(p̂y − qAy). (8)

Then we have

Ĥxy = 1

2
mq

(̂
v2

x + v̂2
y

)
. (9)

In the Heisenberg picture the Heisenberg equations of motion for x̂ and ŷ are
governed by Ĥxy , since x̂ and ŷ commute with Ĥz. We get:
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1. Relations between x̂ and v̂x , and between ŷ and v̂y :

dx̂(t)

dt
= v̂x(t),

dŷ(t)

dt
= v̂y(t). (10)

2. Equations of motion for x̂ and ŷ:

dv̂x(t)

dt
= ωq

dŷ(t)

dt
,

dv̂y(t)

dt
= −ωq

dx̂(t)

dt
, (11)

where ωq = qB/mq . Integrating once gives

v̂x(t) − v̂x(0) = ωq (̂y(t) − ŷ(0)), v̂y(t) − v̂y(0) = −ωq (̂x(t) − x̂(0)).
(12)

These equations can be rewritten as

v̂x(t) = ωqŷ(t) − ωqŷ0, v̂y(t) = −ωqx̂(t) + ωqx̂0, (13)

where

x̂0 = x̂(0) + 1

ωq

v̂y(0), ŷ0 = ŷ(0) − 1

ωq

v̂x(0). (14)

Now, introduce an operator r̂2(t) defined by

r̂2(t) = (̂x(t) − x̂0)2 + (̂y(t) − ŷ0)2. (15)

Then we have

r̂2(t) = 1

ω2
q

(̂v2
x(t) + v̂2

y(t)) = 2

mqω2
q

Ĥxy, (16)

which renders r̂2(t) time independent in the Heisenberg picture. It follows that we
have

v̂2
x(t) + v̂2

y(t) = (ωqr̂(t))2 = (ωqr̂(0))2 = v̂2
x(0) + v̂2

y(0). (17)

Denoting r̂2(0) simply by r̂2 we get

r̂2 = 2

mqω2
q

Ĥxy or
1

2
mqω

2
q r̂

2 = Ĥxy. (18)

Classically the charged particle’s circular motion in the x–y plane about an
origin (x0, y0) is fixed by the initial conditions. A circular motion of radius r
and angular frequency ωq about an origin (x0, y0) in the x–y plane is explicitly
describable by

x(t) = r sin(ωqt + λ) + x0, y(t) = r cos(ωqt + λ) + y0. (19)

Note that (x0, y0) is the position of the origin of the circular motion. The position
of the particle at t = 0 is (x(0), y(0)) which is different from (x0, y0). The radius
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r of the circular motion clearly satisfies

r2 = (x(t) − x0)2 + (y(t) − y0)2. (20)

Let vx(t) = dx(t)/dt and vy(t) = dy(t)/dt . Using Eq. (19) we can verify the
following relations:

x0 = x(0) + 1

ωq

vy(0), y0 = y(0) − 1

ωq

vx(0), (21)

and

v2
x(t) + v2

y(t) = ω2
xr

2. (22)

The particle’s energy Exy for the circular motion can be directly related to r:

Exy = 1

2
mqv

2 = 1

2
mqω

2
qr

2 or r2 = 2

mqω2
q

Exy. (23)

By comparing with the quantum results presented earlier we can interpret r̂ as the
radius operator for the circular motion in the x–y plane about the origin x̂0 and
ŷ0 in the sense that the quantized numerical values of the square of the radius are
identified with the eigenvalues of r̂2 (Capri, 1985). We can interpret this result
as the qunatization of the circular orbits, as in the Bohr model of the atom. The
eigenvalues R2

n of r̂2 can be written down, i.e.,

R2
n = 2h̄

mqωq

(n + 1/2). (24)

These values are obtained in terms of the eigenvalues of the Hamiltonian Ĥxy which
are known to be (n + 1/2)h̄ωq for some integer n (Capri, 1985). A knowledge of
R2

n enables us to fix a corresponding area enclosed by the circular path. This in
turn enables us to define the magnetic flux enclosed by a quantized orbit, i.e.,

�n = πR2
nB =

(
n + 1

2

)
h

q
, (25)

which agrees with the result in Eq. (1).
One may wonder how this can be reconciled with the fact that generally

quantum mechanics does not allow us to trace the path of a particle. In other
words we cannot have a circular path fixed in space for the motion of a quantum
particle in an external magnetic field. The answer is that we define the enclosed
area in terms of a quantized value R2

n of the radius square without requiring a
circular orbit rigidly fixed in space. In fact we do not have a rigid circular orbit for
the particle to trace out because of the lack of a fixed origin. To fix the origin we
need simultaneous values of x̂0 and ŷ0; we cannot have these simultaneous values
since x̂0 and ŷ0 do not commute (Capri, 1985). Despite this, a knowledge of R2

n
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does enable us to have a well-defined numerical value of the area enclosed by an
orbit without having a rigidly fixed orbit.

One may augue that a spiralling trajectory in three-dimensions with a non-
zero velocity component vz does not enclose an area in the x–y plane. However, we
can choose a new coordinate system (x ′, y ′, z′) with x ′ = x, y ′ = y, z′ = z − vzt ,
i.e., a coordinate system moving along z-axis with velocity vz. Then the particle
in the x-y plane at t = 0 will be seen to move round a circle lying in the x ′ − y ′

plane at a later time in Kittel’s presentation. This enables us to establish a flux
enclosed by the circle on the x ′ − y ′ plane in the ususal sense.

It is well-known in the study of diamagnetism that a circulating charged
particle gives rise to a circulating current I which in turn will give rise to a
magnetic field, due to Faraday’s law. The current will then enclose a magnetic
flux (Kip, 1981). Our task is to formulate a quantum theory of induced mag-
netic flux due to the circular motion of a quantum particle. Note that such an
induced flux is not necessarily related to the presence of an external magnetic field.
In the example presented earlier we are concerned with the external magnetic flux
enclosed by an orbit; we have not considered the magnetic flux generated by the
current due to the orbital motion of the particle.

In this paper we shall present a study of magnetic flux generated by an electron
in orbital motion and by its spin independent of an external magnetic field. In other
words we aim to establish an intrinsic magnetic flux due to an electron’s orbital
motion and due to its spin. We shall show that different formulations lead to the
same results.

Consider the simple case of an electron in a hydrogen atom. The 3-
dimensional Euclidean space R

3 can be parameterized either by rectangular Carte-
sian coordinates (x, y, z) or by the corresponding spherical coordinates (r, θ, ϕ). A
normalised energy eigenfunction is of the form ψn�m(r, θ, ϕ) = Rn�(r)Y�m(θ, ϕ),
where Rn�(r) is the radial wave function, Y�m(θ, ϕ) is a spherical harmonic, and
n, �,m are the usual quantum numbers, in particular m is the magnetic quantum
number. The z-component angular momentum operator L̂z = −ih̄∂/∂ϕ admits
ψn�m(r, θ, ϕ) as an eigenfunction corresponding to the eigenvalue Lz = mh̄. An
energy eigenfunction ψn�m(r, θ, ϕ) with m �= 0 describes an electron having a
probability density |ψn�m(r, θ, ϕ)|2 of being at position (r, θ, ϕ) and executing a
circular motion of radius (Spiegel, 1974) a = r sin θ about z-axis. This is born out
by the fact that due to the radial wave function and the θ -dependent part of the
spherical harmonic being real-valued the probability current density arising from
an energy eigenfunction ψn�m(r, θ, ϕ) is zero along the radial and the θ directions.
There is a non-zero probability current density for the circular motion along the ϕ

direction given by (Merzbacher, 1998; Cohen-Tannoudji et al., 1977)

j (r, θ, ϕ) = − ih̄

2me

(
ψ∗

n�m

∂ψ∗
n�m

a∂ϕ
− ∂ψn�m

a∂ϕ
ψn�m

)
(26)
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= Lz

mea
|ψn�m(r, θ, ϕ)|2 , (27)

where me is the mass of the electron. The probability current across an elementary
surface area (Spiegel, 1974) rdrdθ perpendicular to the flow is

j (r, θ, ϕ) rdr dθ = Lz

mea
|ψn�m(r, θ, ϕ)|2 rdr dθ. (28)

A probability current density j (r, θ, ϕ) gives rise to an electric current density
(Merzbacher, 1998; Cohen-Tannoudji et al., 1977)

je(r, θ, ϕ) = −ej (r, θ, ϕ). (29)

Here the negative sign shows that the electric current flows in an opposite direction
to that of the probability current due to the negative nature of the electron charge.
It follows that there is an electric current circling the z-axis in a circle of radius
a = r sin θ flowing perpendicularly across an elementary surface area rdrdθ given
by

je(r, θ, ϕ) rdr dθ = − eLz

mea
|ψn�m(r, θ, ϕ)|2 rdr dθ. (30)

As a precursor let us derive the magnetic moment of an electron in orbital
motion in an atom, a quantity well-known in quantum mechanics.

2. ORBITAL MAGNETIC MOMENT

We know from classical magnetostatics that an electrical current of magnitude
I going round a circular loop of radius a gives rise to a magnetic moment of
magnitude (Jackson, 1999) M = πa2I . A particle of charge q and mass mq moving
with speed v round a circle of radius a in the x-y plane will revolve with frequency
v/2πa. This motion gives rise to a current I and a magnetic moment Mz along the
z-axis given by

I = q
v

2πa
= ρqv and Mz = 1

2
qav, (31)

where ρq = q/2πa may be interpreted as the effective charge density round the
circle. This is related to its (classical) angular momentum Lcl = mqva along the
z-axis by (Jackson, 1999)

Mz = q

2mq

Lcl. (32)

The quantum magnetic moment of an orbiting electron in an atom can be
similarly worked out (Greiner, 1989). An orbiting electron gives rise to an electric
current circulating the z-axis with current density given by Eq. (29). This results
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in a current in Eq. (30) flowing across surface element rdr dθ . Such a current
element je(r, θϕ) rdr dθ in Eq. (30) circulating the z-axis in a circle of radius a
gives rise to a magnetic moment element dµ(o)

z given by

dµ(o)
z = πa2je(r, θ, ϕ) rdr dθ (33)

= −πa2 eLz

mea
|ψn�m(r, θ, ϕ|2 rdr dθ (34)

= −πeLz

me

|ψn�m(r, θ, ϕ)|2 r2 sin θ dr dθ, using a = r sin θ. (35)

The total magnetic moment is then

µ(o)
z =

∫ ∞

0

∫ π

0
−πeLz

me

|ψn�m(r, θ, ϕ)|2 r2 sin θ dr dθ (36)

= − e

2me

Lz. (37)

We have used the normalised nature of ψn�m(r, θ, ϕ). This is the well-known result
for the magnetic moment of a circulating electron in an atom.

3. ORBITAL MAGNETIC FLUX

3.1. The Problem

Our next objective is to establish a magnetic flux associated with the orbiting
electron in a hydrogen atom. The idea is based on the familiar notion that an electric
current flowing round a circle of radius a about the z-axis would enclose a magnetic
flux generated by the current. This flux should be proportional to the current, the
proportionality constant being the self-inductance (Lorrain and Corson, 1970). So,
a current element in Eq. (30) circulating about the z-axis in a circle of radius a
should enclose a magnetic flux element d�(o)

z (r, θ, ϕ) proportional to the current
je(r, θ, ϕ) rdr dθ , i.e., we have

d�(o)
z (r, θ, ϕ) = Le(a)je(r, θ, ϕ) rdr dθ, (38)

where Le(a) is the self-inductance. It is not clear what expression we should use
for the self-inductance. One way to proceed is to seek a precedent, i.e., to see
if there is any expression for a self-inductance of a circulating quantum current
which would give the correct result for the enclosed magnetic flux. Fortunately
there is indeed a precedent in the study of superconductivity. A supercurrent in
a superconductor is due to the flow of electron pairs known as Cooper pairs
(Feynman et al., 1965). Each Cooper pair has a mass mc = 2me and a charge
qc = −2e associated with it. When considering the magnetic flux enclosed by
a supercurrent in a superconducting ring Wan and Harrison (Wan and Harrison,
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1993) propose a model in terms of a current flowing round a circle of radius a with
a self-inductance which is proportional to a Cooper pair’s mass mc and inversely
proportional to the charge density ρc = qc/2πa, i.e.,

Lc(a) = mc

ρ2
c

= mc

(
2πa

qc

)2

. (39)

Such a model leads to the correct quantized magnetic flux values enclosed by
a superconducting ring. The theory has been generalized to apply to a number
of superconducting circuits (Wan and Harrison, 1993; Wan and Fountain, 1996;
Harrison and Wan, 1997; Wan and Fountain, 1998; Trueman and Wan, 2000; Wan,
2006). We shall assume a corresponding expression in Eq. (39) for our circulating
current due to the motion of an electron, as opposed to a Cooper pair, i.e., we shall
assume

Le(a) = me

ρ2
e

= me

(
2πa

e

)2

. (40)

We can gain an appreciation of such an expression for the self-inductance in
terms of classical circuit theory. First consider an ideal resistanceless coil of radius
r and self inductance L lying in the x-y-plane. Apply an external magnetic field
of magnitude B(t), where B(t) increases from an initial zero value, and directed
perpendicular along the positive z-direction to the coil. An e.m.f., and hence an
electric field E(t) and a current I (t), will be induced in the coil due to the change
of the external magnetic flux �ex(t) enclosed by the coil. The electric field will be
tangentially directed, i.e.,

E(t) = E(t)iθ , (41)

where iθ is the unit vector along the polar angle θ , and E(t) > 0 if E(t) is anti-
clockwise, and E(t) < 0 if E(t) is clockwise. Similarly the current I (t) is positive
in the anti-clockwise direction and negative in the clockwise direction,

Faraday’s and Lenz’s laws imply a link between E(t) and �ex(t):

e.m.f. =
∮

E(t) · d� = −d�ex

dt
⇒ 2πrE(t) = −d�ex

dt
. (42)

Moreover, there will be an induced flux �ind due to the induced current I, i.e., we
have

�ind = Lq(r)I (t), (43)

where Lq(r) is the self-inductance. The circuit equation for the current flow in the
coil is

−d�ex

dt
− d�ind

dt
= I (t)R = 0, (44)
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on account of zero resistance, i.e., R = 0. It follows that the total magnetic flux
threading through the coil

�T = �ex + �ind (45)

is a constant, a well-known result (Rose-Innes and Rhoderick, 1978). Moreover,
we have, on account of Eq. (42),

2πrE(t) = d�ind

dt
= Lq(r)

dI

dt
. (46)

Let us consider a particle of charge q and mass mq constrained to move
round a circle of radius r with tangential velocity v. Such a circular motion of the
particle gives rise to a current I = ρqv. Now, suppose the particle’s motion round
the circle, and hence the current, is caused, by the e.m.f. induced by an applied
flux �ex(t). This means that the particle is accelerated from rest by an induced
electric field E(t) given by Eq. (42). We have (Kip, 1981)

mq

dv

dt
= qE(t). (47)

From Eqs. (46) and (47) we get

mq

dv

dt
= q

Lq(r)

2πr

dI

dt
= Lq(r)

( q

2πr

)
ρq

dv

dt
(48)

⇒ Lq(r) = mq

(
2πr

q

)2

= mq

ρ2
q

, (49)

agreeing with the result in Eqs. (39) and (40). The resulting flux due to the current
I has the value

�I = Lq(r)I = 2π

q
Lcl. (50)

3.2. Intrinsic Magnetic Flux of an Orbiting Electron

Returning to our main line of argument, we can obtain the magnetic flux due
to an electron’s orbital motion as follows:

1. First write down the expression in Eq. (38) for d�(o)
z (r, θ, ϕ) explicitly,

i.e.,

d�(o)
z (r, θ, ϕ) = Le(a)je(r, θ, ϕ) rdr dθ (51)

= me

(
2πa

e

)2 (
− eLz

mea

)
|ψn�m(r, θ, ϕ)|2 rdr dθ (52)
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= − (2π )2Lz

e
|ψn�m(r, θ, ϕ)|2 r2 sin θ dr dθ, (53)

the radius a having been replaced by r sin θ in the last step.
2. Then define the (total) magnetic flux of an orbiting electron in an energy

eigenstate ψn�m(r, θ, ϕ) to be

�(o)
z =

∫ ∞

0

∫ π

0
d�(o)

z (r, θ, ϕ) (54)

= − (2π )2Lz

e

∫ ∞

0

∫ π

0
|ψn�m(r, θ, ϕ)|2 r2 sin θ dr dθ (55)

= −2π

e
Lz. (56)

With Lz = mh̄ we get

�(o)
z = −m�(o)

e , �(o)
e = h/e. (57)

We call �(o)
z the orbital magnetic flux of the electron along the z-direction due

to its orbital motion. Our result shows that the orbital magnetic flux is quantized
into a multiple of �(o)

e = h/e which may be referred to as the electron orbital
magnetic flux quantum. For a superconductor the current is due to Cooper pairs;
the corresponding Cooper pair magnetic flux quantum in a superconducting ring
has the value �(sr)

c = h/2e (Feynman et al., 1965; Wan and Harrison, 1993).
The above derivation of the orbital magnetic flux also serves to illustrate the

probabilistic nature of quantum mechanics. Because of the intrinsic probabilistic
nature of quantum systems there is generally a need in quantum mechanics for
an averaging process to obtain the expectation value of a physical quantity. For
instance, given a wave function ψ(x) the position expectation value is the average
over all position values under the probability density function |ψ(x)|2. Similarly
our derivation of the flux is based on the following intuitive understanding:

1. The circular motion of the electron gives rise to an electric current circling
the z-axis. The electron at position (r, θ, ϕ) executing a circule motion of
radius a = r sin θ with angular momentum Lz may be regarded as having
a linear (tangential) velocity Lz/mea.

2. The electron will have only a certain probability of executing a particular
circular motion since there is only a probability density |ψn�m(r, θ, ϕ)|2
for the electron to be at position (r, θ, ϕ). It follows that the probability
current density circulating the z-axis at (r, θ, ϕ) is

|ψn�m(r, θ, ϕ)|2Lz/mea (58)
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which agrees with Eq. (27). This gives rise to the electric current density
in Eq. (29).

3. A circulating current element would enclose a magnetic flux element. The
expectation value for the magnetic flux can be obtained by summing all
these flux elements, i.e., the expectation value for the magnetic flux is
obtained by integrating d�(o)

z (r, θ, ϕ).

In analogy with a superconducting ring (Wan and Harrison, 1993) we can
also introduce an electron orbital magnetic flux operator by

�̂(o)
z = −2π

e
L̂z (59)

whose eigenvalues coincide with the quantized flux values, i.e.,

�̂(o)
z ψn�m(r, θ, ϕ) = (−m�(o)

e

)
ψn�m(r, θ, ϕ). (60)

The orbital flux operator is related to the orbital magnetic moment operator4 by

µ̂(o)
z = e2

4πme

�̂(o)
z or �̂(o)

z = 4πme

e2
µ̂(o)

z . (61)

Finally note that the flux operator �̂(o)
z can be obtained by formally quantizing

the classical expression in Eq. (50) with q replaced by -e. To strengthen the notion
of an intrinsic magnetic flux due to orbital motion we shall give two further
intuitive and semi-classical derivations.

3.3. Semi-Classical Treatment in Terms of the Bohr Atom

It is easier to appreciate the concept of an enclosed magnetic flux if one can
imagine a more definite circular orbit to enclose a flux. The Bohr’s model of the
atom would be of help here. The electron in the Bohr’s model of the hydrogen atom
revolves in a certain quantized orbit of radius rm which satisfies Bohr’s angular
momentum quantization rule.

mevmrm = mh̄, (62)

where vm is the tangential velocity of the electron in that orbit and m is identifiable
with the magnetic quantum number in Eq. (60). This orbit should enclose a flux
�m due to a current Im = ρevm where ρe = −e/2πrm, arising from the circular
motion of the electron. Using Eq. (40) for the self inductance (with a replaced by
rm) we get

�m = Le(rm)Im = −m
h

e
(63)

4 The z-component orbital magnetic moment operator is µ̂
(o)
z = µ̂

(o)
e = −(e/2me)L̂z.
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which agrees with Eq. (57). We can rephrase various quantities in Bohr’s model
in terms of the standard quantum theory of the hydrogen atom which should
strengthen the quantum mechanical content of Eqs. (62) and (63). In other words
we have:

1. Radius of a Bohr Orbit: The radius variable r appears in Coulomb potential
energy V (r) = −e2/4πε0r in the Hamiltonian for the hydrogen atom. Or
rather it is the inverse 1/r which appears directly. The expectation value
〈ψn�m|V (r)ψn�m〉 of V (r) in the energy eigenstate ψn�m can be shown to
be equal to V (rn), where rn is the radius of the nth Bohr orbit. In other
words we have

〈ψn�m|V (r)ψn�m〉 = V (rn) = − e2

4πε0rn

, (64)

since (Zettili, 2001)

1

rn

= 〈ψn�m|1

r
ψn�m〉 (65)

We can therefore identify a Bohr radius rn as the effective radius at which
the Coulomb potential V (rn) is equal to the quantum expectation value
〈ψn�m|V (r)ψn�m〉 of the potential.

2. Velocity in a Bohr Orbit: The velocity vm in Eq. (62) can then be re-
garded as the effective tangential velocity at radius rn corresponding to
the quantum expectation value 〈ψn�m|L̂zψn�m〉 of the z-component angular
momentum operator L̂z in state ψn�m, i.e.,

vm = 1

mern

〈ψn�m|L̂zψn�m〉 = 1

mern

mh̄. (66)

3.4. Semi-Classical Treatment in Terms of Electron’s
Orbital Magnetic Moment

Finally let us adopt an entirely different approach to derive the flux �(o)
z .

The starting point in this approach is the generally accepted concept of magnetic
moment µ(o)

z associated with an orbiting electron. This magnetic moment should
give rise to a magnetic field. The idea is to examine how this magnetic field
may give rise to an intrinsic magnetic flux. A successful formulation of this idea
will enable us to derive an intrinsic magnetic flux generated by a spin magnetic
moment.

For definiteness we shall consider the energy eigenstate ψn�m which cor-
responds to the magnetic moment in Eq. (37) directed along the (negative) z-
direction. Let us consider this magnetic moment to be situated at the coordinate
origin. Then at any point in the x–y plane a distance r from the origin, the magnetic
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field generated by this magnetic moment is directed along the z-axis. This field is
related to µ(o)

z by (Jackson, 1999)

B(o)
z = − µ0

4π

µ(o)
z

r3
. (67)

Consider a circular disc of radius r0 lying in the x-y plane and centered at the
origin. The magnetic flux through the area of x-y plane outside the disc is

�
(o)
out (r0) =

∫ ∞

r0

∫ 2π

0
B(o)

z rdϕdr = −µ0

2

µ(o)
z

r0
. (68)

Since the total flux through the entire x–y plane must be zero on account of the
divergence free nature of the magnetic field and the vanishing of the magnetic
field at infinity we obtain the flux through the disc to be

�
(o)
in (r0) = µ0

2

µ(o)
z

r0
. (69)

Now imagine a particle of charge q going round a circular orbit of radius r0

centered at the origin on the x–y plane. This would result in a current I (o) round the
orbit. In order to produce a magnetic field at a point on the x-y plane at a distance
r ≥ r0 from the origin equivalent to that produced by the magnetic moment µ(o)

z

at the origin we must equate the magnetic moment of the current loop to µ(o)
z

πr2
0 I (o) = µ(o)

z . (70)

This current would produce a magnetic field at the center of the loop (Jackson,
1999)

B
(o)
0 = µ0I

(o)

2r0
= µ0µ

(o)
z

2πr3
0

. (71)

The magnetic flux �
(o)
in (r0) in Eq. (69) is seen to be related to B0 by

�
(o)
in (r0) = πr2

0 B
(o)
0 . (72)

In other words �
(o)
in (r0) happens to be the same as that due to a constant magnetic

field B
(o)
0 through the disc.

Next, let us take the flux enclosed per revolution of the particle to be �
(o)
in (r0).

Then the number of revolutions needed to enclose an amount of flux equal to �(o)
z

in Eq. (56) is

N (o) = 2π

e

Lz

�in(r0)
. (73)
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So, starting from a magnetic moment µ(o)
z at the origin aligned along the negative

z-direction we can arrive at a magnetic flux through the disc with a value which is
independent of the disc radius r0.

The significance of this particular approach lies in the emphasis of the mag-
netic moment as the origin of the flux. In other words a quantum particle’s motion
which generates a magnetic moment should lead to an intrinsic magnetic flux.
There should then be an intrinsic magnetic flux associated with an electron’s spin.
The seemingly arbitrary number N (o) in Eq. (73) turns out to have a definite
physical origin in our study of spin in the next section.

4. SPIN MAGNETIC FLUX

The question as to whether the spin motion of an electron would give rise to
an intrinsic magnetic flux is not something we can easily established since spin
has no classical counterpart, i.e., we do not have a generally accepted classical
picture of electron spin. However, we can try different model theories of electron
spin to see if we can arrive at a common value of an intrinsic magnetic flux, i.e.,
an intrinsic value independent of any particular model of spin, as we did for the
orbital magnetic flux. A success in such an endeavour would lend support to the
suggestion on the existence of an intrinsic magnetic flux associated with spin.
In what follows we shall do just that. Each model theory presented below is not
meant to be taken literally as a true representation of spin. The validity of our
proposal on the existence of an intrinsic magnetic flux associated with spin can
only be confirmed by experiments.

4.1. Spin Magnetic Moment Approach

The starting point in this approach is the known magnetic moment associated
with an electron spin. Let us denote this magnetic moment along the z-axis by
µ(s)

z . Quantum mechanics tells us that

µ(s)
z = − e

me

Sz, (74)

where Sz denotes a spin value, i.e., Sz = ±h̄/2. For definiteness we shall consider
a spin-up state αz corresponding to Sz = h̄/2. We can then follow the arguments of
Section 3.4 to establish a similar concept of an intrinsic magnetic flux. Everything
goes through as before, except with µ(o)

z and Lz replaced by µ(s)
z and Sz, e.g., in

place of Eqs. (70), (71) and (72) we now have

πr2
0 I (s) = µ(s)

z , B
(s)
0 = µ0µ

(s)
z

2πr3
0

, �
(s)
in (r0) = µ0

2

µ(s)
z

r0
= πr2

0 B
(s)
0 . (75)
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If we count the flux enclosed by a similar number of revolutions as in the orbital
case, i.e.,

N (s) = 2π

e

Sz

�in(r0)
, (76)

obtained from N (o) by replacing Lz by Sz, we will obtain an enclosed flux

�(s)
z = −2π

e
Sz. (77)

We can identify this as the intrinsic flux given rise by the spin motion. As before
the radius r0 which appears in various expressions in section 3.4 and the electron
mass me play no part in the final expression for �(s)

z . This flux does not depend
on the radius r0. If desired one can imagine r0 to be the classical electron radius
which is of the order of 10−15 m (Feynman et al., 1964). One can also let r0 tend
to zero. In this limit the electron may be treated as a point charge carrying a spin
and an intrinsic flux of magnitude h/2e.

Finally let us comment on the meaning of N (s) here. In this model the charge
going round a circle of radius r0 would need to revolve round with a frequency.

f (s)
rev = Sz

meπr2
0

(78)

in order to give rise to a current I (s) to satisfy the first of the equations in Eqs.
(75). On the other hand, under a magnetic field of magnitutde B

(s)
0 a charge has

a cyclodron frequency of revolution fcyc = eB
(s)
0 /2πme or a cyclotron period

T (s)
cyc = 2πme/eB0. The number N (s) employed in the counting of flux is equal

to the product of the cyclotron period T (s)
cyc time the frequency f (s)

rev , i.e., N (s) =
T (s)

cycf
(s)
rev , the number of revolutions during a cyclotron period.
If we accept that a magnetic moment can give rise to an intrinsic magnetic

flux then even electrically neutral particles like the neutron which possesses a
magnetic moment can have associated with it an intrinsic magnetic flux.

4.2. Hidden Variable Approach

There have been various models of electron spin based on the idea of a
spinning top (Rosen, 1951; Schulman, 1968; Schulman, 1981; Barut et al., 1992).
Let us begin by treating an electron as a small ball of charge spinning about its own
axis. Our previous analysis should apply. Let us visualize a spherical coordinate
system (rs, θs, ϕs) with origin placed at the center of the electron. If we assume,
in analogy with Eqs. (27) and (29), that the electron’s spinning motion produces
an electrical current density

j (s)
e (rs, θs, ϕs) = − eSz

mea
ρ(rs, θs, ϕs), (79)
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where ρ(rs, θs, ϕs) plays the role of |ψn�m|2(r, θ, ϕ) in Eq. (27) as a probability
density function for the smearing out of the electron charge. We should have a
normalization condition:∫ ∞

0

∫ π

0

∫ 2π

0
ρ(rs, θs, ϕs)r

2
s sin θs drs dθsdϕs = 1. (80)

There is no reason for ρ(r, θ, ϕ) to be the same as |ψn�m|2(r, θ, ϕ), e.g., we can
have ρ(rs, θs, ϕs) going to zero outside a small radius, e.g., outside the classical
electron radius. All we need is to retain cylindrical symmetry, i.e., we assume that
ρ(rs, θs, ϕs) is independent of ϕs . Following Eqs. (38) to (57) we immediately
obtain the flux associated with the electron spin. For the spin-up state αz, i.e., αz

satisfies the eigenvalue equation Ŝzαz = +(h̄/2)αz, the associated magnetic flux
has the value

�(s)
z = −2π

e

h̄

2
= −1

2
�(o)

e (81)

or

�(s)
z = −�(s)

e , �(s)
e = 1

2

h

e
, (82)

agreeing with the expression in Eq. (77). This electron spin magnetic flux along
the z-direction can also be represented by an operator, i.e.,

�̂(s)
z = −2π

e
Ŝz. (83)

We would then get the flux as an eigenvalue of the flux operator, �̂(s)
z αz = �(s)

z αz.
Instead of a model electron as a spinning ball of charge in the 3-dimensional

physical space R
3 an alternative interpretation of the above formalism in terms

of a hidden variable space can be offered. Let us start with the well-established
hidden variable model of spin proposed by John Bell (1966, 1987). Let Ŝx, Ŝy and
Ŝz be the usual spin operators along the x,y and the z directions respectively. Given
an arbitrary spin state we can orientate our coordinate axes so that the spin state
would correspond to a spin-up state along the z-axis, i.e., we can, without loss
of generality, confine ourselves to the spin-up state αz in our chosen coordinate
system. A general spin observable has the form

Â(s) = a + bxŜx + byŜy + bzŜz, (84)

for some real numbers a, bx, by and bz (Bell, 1966; Bell, 1987) In the traditional
quantum theory of spin the expectation value of observable Â(s) in state αz is given
by 〈αz|Â(s)αz〉. In Bell’s hidden variable theory such an expectation value can be
expressed as an integral of an appropriate numerical function A(s)(λ) of a real
variable λ, known as a hidden variable, over the range (− 1

2 , 1
2 ), i.e., there exists a
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real-valued function A(s)(λ) such that

〈
αz|Â(s)αz

〉 =
∫ 1

2

− 1
2

A(s)(λ)dλ. (85)

Such a function applicable to a general spin observable Â(s) can be explicitly
written down. In the special case when α, bx and by vanish the spin observable in
Eq. (84) reduces to Â(s)

z = bzŜz. Since

Â(s)
z αz = bzh̄

2
αz, (86)

we have the expectation value of observable Â(s)
z in state αz given by 〈αz|Â(s)αz〉 =

bzh̄/2. The function in Eq. (85) for Â(s)
z is clearly A(s)

z (λ) = bzh̄/2 for all λ ∈
(− 1

2 , 1
2 ). Let us inject a geometric meaning into such a model by introducing a

3-dimensional hidden variable space 
 with rectangular coordinate axes xλ, yλ, zλ

similar to the usual 3-dimensional Euclidean space and its Cartesian coordinate
axes (Barut and Meystre, 1984; Jackson, 1985). The corresponding spherical
coordinates in 
 will be denoted by (rλ, θλ, ϕλ).

Now, relate the hidden variable λ to θλ by

λ = −1

2
cos θλ with θλ ∈ (0, π ) ⇔ λ ∈

(
−1

2
,

1

2

)
. (87)

Substituting into Eq. (85) we get

〈
αz|Â(s)

z αz

〉 =
∫ π

0
A(s)

z (θλ)
sin θλ

2
dθλ, (88)

where

A(s)
z (θλ) = bzh̄/2. (89)

The integral in Eq. (88) can be rewritten as a volume integral in the following
form:

〈
αz|Â(s)

z αz

〉 =
∫ ∞

0

∫ π

0

∫ 2π

0
Ã(rλ, θλ, ϕλ)ρ̃(rλ, θλ, ϕλ)r2

λ sin θλ drλ dθλ dϕλ,

(90)
where Ã(rλ, θλ, ϕλ) = bzh̄/2, and∫ ∞

0

∫ π

0

∫ 2π

0
ρ̃(rλ, θλ, ϕλ)r2

λ sin θλ drλ dθλ dϕλ = 1. (91)

We can interpret this as an integral of the function Ã(rλ, θλ, ϕλ) over the hidden
variable space 
 weighted by the probability density function ρ̃(rλ, θλ, ϕλ) in the
hidden variable space 
. When the function Ã and the probability density function
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ρ̃(rλ, θλ, ϕλ) are independent of ϕλ the integrals in Eqs. (90) and (91) reduce to

〈αz|Â(s)
z αz〉 = 2π

∫ ∞

0

∫ π

0
Ã(rλ, θλ)ρ̃(rλ, θλ)r2

λ sin θλ drλ dθλ, (92)

and ∫ ∞

0

∫ π

0
ρ̃(rλ, θλ)r2

λ sin θλ drλ dθλ = 1

2π
. (93)

Next let us imagine an electron in the spin-up state as a ball spinning round
about the zλ-axis with angular momentum Szλ

in the hidden variable space 
.
Following Eqs. (27) and (29) we can imagine a corresponding linear velocity of
Szλ

/meaλ at position (rλ, θλ, ϕλ) for the spinning motion in the hidden variable
space with radius aλ = rλ sin θλ and that the linear motion gives rise to an electric
current density −eSzλ

/meaλ. Following previous arguments and the assumption
that Szλ

= h̄/2 we would obtain the flux �(s)
z in Eq. (82). This result is perhaps not

surprising as we have employed essentially the same mathematical analysis. This
approach which relates to the well-known Bell’s hidden variable theory formulated
in a 3-dimensional hidden variable space may be more appealing to people who
do not wish to visualize an electron as a spinning ball of charge in the physical
space.

5. CONCLUDING REMARKS

An orbiting electron in an atom encloses a magnetic flux due to its orbital
motion. In addition we would argue that an electron possesses an intrinsic magnetic
flux due to its spin, i.e., we can imagine an electron as a kind of flux tube. In addition
to its intrinsic flux an electron executing a circular motion due to an external
magnetic field also encloses an external magnetic flux given by Eq. (1). The
present result can be associated with the recent investigation of excitonic transport
in semiconductor nano-structure which has been attracting an increasing interest
(Miller et al., 1999). On account of the similarities, excitons in semiconductors
may be regarded as “atoms” each consisting of an electron and a hole that are
bound together by Coulombic attractions. Such excitons resemble those two-level
systems important for optoelectronic devices.

We have now three basic magnetic flux quanta:

1. The magnetic flux quantum due to the electron’s orbital motion in an
atom: the electron orbital magnetic flux quantum �(o)

e = h/e.
2. The magnetic flux quantum due to the electron’s spin motion: the electron

spin magnetic flux quantum �(s)
e = h/2e.

3. The magnetic flux quantum due a supercurrent in a superconducting ring;
the Cooper pair magnetic flux quantum �(sr)

c = h/2e.
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The Cooper pair flux quantum �(sr)
c = h/2e has a magnitude of 2.07 ×

10−7 gauss cm2. This value was measured by Deaver and Fairbank back in 1961
(Deaver and Fairbank, 1961; Fujita and Godoy, 1996; Willaims, 1970; Gallop,
1091). The magnitude of the electron orbital flux quantum �(o)

e is twice that of
�(sr)

c . An optical transition between different energy levels of an electron in an
atom should incur a change of flux, e.g., a transition from an excited state of mag-
netic quantum number m to the ground state of zero magnetic quantum number
means a change of magnetic flux by m�(o)

e which is many times bigger than �(sr)
c .

A spin-flip of a free electron should also involve a change of flux. It would be
interesting to devise an experiment to test Faraday’s and Lenz’s laws arising from
the change of flux due to these transitions, and to explore the applications of these
intrinsic quantities.
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